Piezoelectric smart biomaterials for bone and cartilage tissue engineering
نویسندگان
چکیده
Tissues like bone and cartilage are remodeled dynamically for their functional requirements by signaling pathways. The signals are controlled by the cells and extracellular matrix and transmitted through an electrical and chemical synapse. Scaffold-based tissue engineering therapies largely disturb the natural signaling pathways, due to their rigidity towards signal conduction, despite their therapeutic advantages. Thus, there is a high need of smart biomaterials, which can conveniently generate and transfer the bioelectric signals analogous to native tissues for appropriate physiological functions. Piezoelectric materials can generate electrical signals in response to the applied stress. Furthermore, they can stimulate the signaling pathways and thereby enhance the tissue regeneration at the impaired site. The piezoelectric scaffolds can act as sensitive mechanoelectrical transduction systems. Hence, it is applicable to the regions, where mechanical loads are predominant. The present review is mainly concentrated on the mechanism related to the electrical stimulation in a biological system and the different piezoelectric materials suitable for bone and cartilage tissue engineering.
منابع مشابه
Piezoelectric polymers as biomaterials for tissue engineering applications.
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among oth...
متن کاملSol-gel synthesis of (Ca-Ba)TiO3 nanoparticles for bone tissue engineering
Piezoelectric materials are the group of smart materials which have been recently developed for biomedical applications, such as bone tissue engineering. These materials could provide electrical signals with no external source power making them effective for bone remodeling. Between various types of materials, BaTiO3 and CaTiO3 are nontoxic piezoelectric ceramics, which recently have been intro...
متن کاملAdvanced tissue engineering in periodontal Regeneration
The old wishes of people were to regenerate lost tissues of periodontium that this fact is achieved by gen and cell therapy .Periodontal disease is a chronic inflammation around the tooth by microbes that causes destruction of supporting structure of tissue of tooth such as alveolar bone, cementum and periodontal ligament. For treatment of periodontal diseases we can use the biomaterials which ...
متن کاملGradient biomaterials for soft-to-hard interface tissue engineering.
Interface tissue engineering (ITE) is a rapidly developing field that aims to fabricate biological tissue alternates with the goal of repairing or regenerating the functions of diseased or damaged zones at the interface of different tissue types (also called "interface tissues"). Notable examples of the interface tissues in the human body include ligament-to-bone, tendon-to-bone and cartilage-t...
متن کاملCartilage and Bone Regeneration – How close are we to bedside?
The treatment/regeneration of bone and cartilage diseases or defects, whether induced by rheumatism, joint dysplasia, trauma, or surgery presents great challenges that have not been fully solved by the current therapies. In the last few years, tissue engineering and regenerative medicine have been proposing advanced tools and technologies for bone and cartilage tissue regeneration, and some of ...
متن کامل